Phi-ML meets Engineering: Data-Efficient Deep Learning using Physics-Informed Neural Networks

Learn more Subscribe to attend Add to Calendar 09/12/2024 04:00 PM 09/12/2024 05:00 PM Europe/London Phi-ML meets Engineering: Data-Efficient Deep Learning using Physics-Informed Neural Networks Location of the event
Thursday 12 Sep 2024
Time: 16:00 - 17:00

Event type

Seminar
Free

Introduction

This bi-monthly seminar series explores real-world applications of physics-informed machine learning (Φ-ML) methods to the engineering practice. They cover a wide range of topics, offering a cross-sectional view of the state of the art on Φ-ML research, worldwide.  

Participants have the opportunity to hear from leading researchers and learn about the latest developments in this emerging field. These seminars also offer the chance to identify and spark collaboration opportunities.

About the event

A grand challenge with great opportunities is to develop a coherent framework that enables blending conservation laws, physical principles, and/or phenomenological behaviours expressed by differential equations with the vast data sets available in many fields of engineering, science, and technology. At the intersection of probabilistic machine learning, deep learning, and scientific computations, this work is pursuing the overall vision to establish promising new directions for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data. To materialize this vision, this work is exploring two complementary directions: (1) designing data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and non-linear differential equations, to extract patterns from high-dimensional data generated from experiments, and (2) designing novel numerical algorithms that can seamlessly blend equations and noisy multi-fidelity data, infer latent quantities of interest (e.g., the solution to a differential equation), and naturally quantify uncertainty in computations.

Watch on demand:

Recording will be uploaded after the seminar. 

Organisers