Introduction

A review carried out by the University of Oxford’s Rees Centre and The Alan Turing Institute for What Works for Children’s Social Care finds that there are substantial reasons to be concerned about the ethics of using these techniques, and that these can only be mitigated through care and transparency in their use.

What Works for Children’s Social Care is pleased to be publishing a review of the ethics of using machine learning in children’s social care.

Machine learning is a general approach in computer science that allows algorithms to carry out tasks on the basis of data, without being explicitly and completely pre-programmed by designers. Machine learning has been used elsewhere in the public sector to improve the personalisation of services, the prediction and analysis of trends, organisational functioning, and resource allocation.

The review concludes that these techniques should not be used without proper ethical oversight; that there are serious risks of reinforcing biases, or risk aversion in the system; and that low data quality may mean either that risks are missed, or that families are subjected to assessment or interventions that they don’t need.

To ensure that these approaches are used as ethically as possible, the report makes several recommendations, including (among others);

  • Mandate the responsible design and use of machine learning models in children’s social care at a national level. These standards should protect affected stakeholders against the misuse of data in social care settings and should provide local authorities with guidelines for designing, procuring, and implementing machine learning models fairly, ethically, and responsibly
  • Institutionalise inclusive and consent-based practices for designing, procuring, and implementing machine learning models. Local authorities should actively pursue the creation of engagement processes, to ensure the consent-based involvement of affected stakeholders in the design, procurement, and implementation workflows
  • Focus on individual- and family-advancing outcomes, strengths-based approaches, and community-guided prospect modelling. This starting point in an improved data landscape would call upon data scientists to develop novel approaches to these analytics that enable holistic considerations of developmental, physical, cognitive, social and emotional needs of affected individuals.
  • Improve data quality and understanding through professional development and training.

In order to provide a rounded view, the research draws on a review of the existing literature, an examination of existing ethical frameworks in social care and machine learning, and roundtable discussions with families with experience of children's social care, practitioners and other experts in the field.

This report is particularly timely, as these approaches are in use in a growing number of local authorities, with varying levels of deployment and transparency. What Works for Children’s Social Care commissioned this review of the ethics of the approach in response to public and sector concern about the absence of a bespoke ethical framework for children’s social care, as part of a broader programme of work around predictive analytics. The second component, a test of the efficacy of these approaches, is due to be published in the summer.

Michael Sanders, Executive Director of What Works for Children’s Social Care, said:

“At What Works for Children’s Social Care, we believe that we need to have an open and transparent debate about the use of predictive analytics and data science in children’s social care, and one that draws in the widest possible number of voices, armed with the best possible academic research. This report from the Rees Centre and The Alan Turing Institute is an important part of that debate and will help both the public, and local and national governments, to consider whether a particular course of action is the right one. ”

Dr Lisa Holmes, Associate Professor at Oxford University and Director of the Rees Centre, said;

“I am delighted to see this report published. I hope that our findings, and in particular our recommendations, can help to ensure that ethical considerations feature in discussions and decisions about the use of machine learning in children's social care.”

Dr David Leslie, Ethics Fellow, The Alan Turing Institute, said:

“In undertaking this ethics review, we are extremely fortunate to have drawn upon the insights of practitioners, data scientists, and families with lived experience of children’s social care. As the use of machine learning systems in this sector continues to grow, it will become more and more important for those most personally and professionally impacted by them to come together to steer these technologies’ prospects and to navigate their challenges. More than anything else, this ethics review stresses the need for well-informed and inclusive participation to achieve this end and to steward the potential of machine learning systems to significantly advance public welfare and the social good.”

 

LINKS TO RESOURCES

Summary
http://whatworks-csc.org.uk/wp-content/uploads/WWCSC_Ethics_of_Machine_Learning_in_CSC_Executive_Summary_Jan2020.pdf

Full Report
https://whatworks-csc.org.uk/wp-content/uploads/WWCSC_Ethics_of_Machine_Learning_in_CSC_Jan2020.pdf

What Works for Children’s Social Care:
https://whatworks-csc.org.uk/

Notes to editors

Media enquiries

Fiona O’Connor, Head of Communications
What Works for Children's Social Care
[email protected]

07773 647480

What Works for Children’s Social Care

What Works for Children’s Social Care (formerly The What Works Centre for Children’s Social Care) is a new initiative that seeks better outcomes for children, young people and families by bringing the best available evidence to practitioners and other decision makers across the children's social care sector. Our mission is to foster a culture of evidence-informed practice. We will generate evidence where it is found to be lacking, improve its accessibility and relevance to the practice community, and support practice leaders (e.g. principal social workers, heads of service, assistant directors and directors) to create the conditions for more evidence-informed practice in their organisations.

The Alan Turing Institute

The Alan Turing Institute (the Institute) is the national institute for data science and artificial intelligence. Established in 2015, the Institute brings together thirteen UK universities. The Institute researches data science and AI applications to tackle some of the biggest challenges in science, society and the economy. The Institute's Public Policy Programme works alongside policy makers to explore how data-driven public service provision and policy innovation might solve long running policy problems and to develop the ethical foundations for the use of data science and artificial intelligence in policy-making. The goal of the programme is to enable technology to have a positive impact on the lives of as many people as possible.

Rees Centre

The Rees Centre (the Centre) at the University of Oxford produces research evidence to improve policy and practice in the areas of children’s social care and education. The Centre aims to improve the life chances and particularly the educational outcomes of those who are, or have been supported by children’s social care services. In 2017, the Centre and the Thomas Coram Research Unit at UCL established the Children’s Social Care Data User Group which brings together academics, local authority data managers, analysts, charities and funders with a shared vision that administrative data from children’s social care and other relevant agencies in England can be analysed and fed back into policy and practice to improve the way that children’s social care services respond to children, young people and their families.