Abstract
We evaluate four count-based and predictive distributional semantic models of Ancient Greek against AGREE, a composite benchmark of human judgements, to assess their ability to retrieve semantic relatedness. On the basis of the observations deriving from the analysis of the results, we design a procedure for a largerscale intrinsic evaluation of count-based and predictive language models, including syntactic embeddings. We also propose possible ways of exploiting the different layers of the whole AGREE benchmark (including both humanand machine-generated data) and different evaluation metrics.
Citation information
Stopponi, Silvia, Nilo Pedrazzini, Saskia Peels-Matthey, Barbara McGillivray & Malvina Nissim. 2023. Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work. Proceedings of the Ancient Language Processing Workshop associated with RANLP-2023, 49–58. Association for Computational Linguistics.