We study the ubiquitous super-resolution problem, in which one aims at localizing positive point sources in an image, blurred by the point spread function of the imaging device. To recover the point sources, we propose to solve a convex feasibility program, which simply finds a nonnegative Borel measure that agrees with the observations collected by the imaging device.
In the absence of imaging noise, we show that solving this convex program uniquely retrieves the point sources, provided that the imaging device collects enough observations. This result holds true if the point spread function of the imaging device can be decomposed into horizontal and vertical components, and if the translations of these components form a Chebyshev system, namely, a system of continuous functions that loosely behave like algebraic polynomials.

Building upon recent results for one-dimensional signals [1], we prove that this super-resolution algorithm is stable (in the generalized Wasserstein metric) to model mismatch (namely, when the image is not sparse) and to additive imaging noise. In particular, the recovery error depends on the noise level and how well the image can be approximated with well-separated point sources. As an example, we verify these claims for the important case of a Gaussian point spread function. The proofs rely on the construction of novel interpolating polynomials, which are the main technical contribution of this paper, and partially resolve the question raised in [2] about the extension of the standard machinery to higher dimensions.

Citation information

Eftekhari, Armin, Tamir Bendory, and Gongguo Tang. "Stable Super-Resolution of Images: A Theoretical Study." arXiv preprint arXiv:1805.09513 (2018)

Research areas