On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case. Barkhagen, M.; Chau, N. H.; Moulines, É. ; Rásonyi, M. ; Sabanis, S.; Zhang, Y. Bernoulli 27(1): 1-33. 2021. DOI: 10.3150/19-BEJ1187
The Tamed Unadjusted Langevin Algorithm. Brosse, N., Durmus, A., Moulines, É. & Sabanis, S. In: Stochastic processes and their applications. 2019 ; Vol. 129, No. 10. pp. 3638-3663.
On fixed gain recursive estimators with discontinuity in the parameters. Chau, H. N., Kumar, C., Rásonyi, M. & Sabanis, S. In : ESAIM: Probability and Statistics. 2019 ; Vol. 23. pp. 217-244
Klemmer, K., Neill, D., Jarvis, S.A. 2018. “Modeling Rape Reporting Delays Using Spatial, Temporal and Social Features” NIPS Workshop on Modeling and Decision-Making in the Spatiotemporal Domain
Jiaoyan Chen, Ernesto Jimenez-Ruiz, Ian Horrocks and Charles Sutton (2019). ColNet: Embedding the Semantics of Web Tables for Column Type Prediction. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19).
Knoblauch, J., Jewson, J. & Damoulas T. (2018). Doubly Robust Bayesian Inference for Non-Stationary Streaming Data using β-Divergences. In Advances in Neural Information Processing Systems (NIPS 2018).
Knoblauch, J. & Damoulas T. (2018). Spatio-temporal Bayesian On-line Changepoint Detection with Model Selection, International Conference on Machine Learning (ICML 2018).