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1 Challenge overview

The challenge set by the Peak District team involves making a robust and
scalable algorithm to identify changes in the land cover, including
changes in land use and habitats, using aerial photography images from
two time periods roughly 10 years apart. This model should ideally be
able to incorporate new data every 5 years and potentially be portable to
application by other national parks in England.

The data consists of 12.5 cm ground resolution, ortho-rectified,
geo-referenced true colour (RGB) files and 50 cm ground resolution,
ortho-rectified, geo-referenced infrared (IR) files. The files represent 89 1
square-km areas chosen as a training set, representing a total area of
1,439 square-km of the park. In addition, there is secondary data,
including files for a 2 m ground resolution Digital Surface Model and a 5
m ground resolution Digital Terrain Model.

The primary objectives for this challenge are:

• Develop unsupervised AI/ML algorithms for detecting change across
The Peak District National Park that can be used to monitor changes
in land use in future surveys and for other National parks.

• Produce change maps that detail regions where land use has been
altered between 2010 and 2020.

• Identify the degree of changes in areas of conservation interest (i.e.
peat restoration, deforestation, growth of bracken habitats and
disappearance of dry stone walls).

An unsupervised approach that classifies the changes in land cover
features between the two-time points is superior to applying the same
supervised model on the two-time points and comparing the results, as
erroneous predictions in the two models can compound into misleading
change predictions. Re-labelling a new dataset is extremely
time-consuming and represents a huge challenge.

Differences in land use will be impacted by the seasonal variation between
the two acquisition dates. In addition, the impact of different acquisition
times (which will elongate the shadows of various features) has not been
considered.
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2 Project Overview

2.1 Setting the Scene

The Peak District National Park was the first of Britain’s 15 national parks
and is one of the busiest national parks in the world. New technologies,
climate change, more people and changing lifestyles mean that our
potential to negatively change the environment and the appearance of the
landscape is far greater now than in any previous generation. Through a
lack of data we are struggling to understand these changes at a
landscape scale and this makes it difficult to target our conservation
efforts. Therefore, mapping the extent of land use and land cover (LC)
categories is essential for better environmental monitoring, urban
planning, nature protection, as well as long-term climate adaptation
efforts. However, available data often does not provide the necessary
(spatial and LC class) detail to support these use-cases. In fact, the last
time land cover and land use were monitored (by manual annotation) to a
high degree of accuracy and detail in UK National Parks was 1991.
Consequently, in order to target small-scale and specific habitats, we
urgently need to develop LC maps at high resolution and class detail,
using automated methods to be able to efficiently scale to large areas of
interest.

We have begun to address this problem in the past year. Using 12.5 cm
aerial photography, we have deployed a multi-stage semantic
segmentation approach to predict LC at a very high level of detail. This
supervised-learning approach allows us to map the present-day LC with
71% to 97% accuracy, depending on the specific class.

The aim of the DSG is to develop a change-detection algorithm for land
cover in the Peak District National Park. We have multispectral aerial
imagery available from 2010 and 2020, and we would like to identify,
map and understand the changes that have occurred in the past decade
across the National Park.

Our work so far has been able to map the current land cover (LC) based
on RGB aerial photography with a high degree of accuracy. However,
we are also interested in mapping the change in LC that has occurred
over the past decade. Applying our method to old imagery and comparing
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predictions across years is sub-optimal, because erroneous predictions on
either year would lead to false predictions of land cover change. Therefore,
we would like to be able to infer LC change directly from the two dates of
aerial photography.

Theoretically, the number of possible LC changes could scale
quadratically with the number of LC classes (20) - although some LC
changes are much more likely than others. Manually annotating these
changes, even for the purpose of training machine learning models, is
costly and very resource-intensive. Therefore, we would like to develop
an unsupervised approach instead that detects changes in land cover
from the raw image pixels directly and clusters changes across the
National Park based on similarity. The product you develop during this
DSG will be delivered to our ecologists, who can classify these inferred
changes post hoc, using our resources efficiently by focusing on LC
changes that stand out in the analysis.

Some changes that we know have occurred but are unsure of their degree
of change and distribution across the Park are:

• Growth and expansion of some species, such as bracken, which,
when unmanaged, can hinder the growth of other (more favourable)
vegetation such as trees.

• Conversion from monotonous habitats into mosaics and vice versa
(e.g., between grass and heather).

• Responses to land management changes include plantation
woodland being converted to broadleaved woodland or rough
grassland being intensified.

• Deforestation and the response of trees to diseases such as Ash
DieBack, particularly at small scales that don’t meet the Forestry
Commission’s criteria for woodlands (>0.5 ha in size).

• Restoration of eroded peat (due to the Industrial Revolution) to
healthy peat bogs with vegetation.

• Disappearance of dry-stone walls, a key cultural heritage feature of
the Peak District, as well as hedges

Being able to map these changes would be an incredibly powerful tool to
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guide conservation work in the Peak District.

2.2 Objectives

• Develop unsupervised AI/ML algorithms for detecting change across
The Peak District National Park that can be used to monitor changes
in land use in future surveys and for other National parks.

• Produce change maps that detail regions where land use has been
altered between 2010 and 2020.

• Identify the degree of changes in areas of conservation interest (i.e.
peat restoration, deforestation, growth of bracken habitats and
disappearance of dry stone walls).

3 Data overview

For this challenge 89 tiles covering a random subset of the Peak District
National Park have been made available (Figure 1a). This high-quality
remote sensing data has been captured by Airbus and Blue Sky. The
Peak District team have an APGB license to use the data. These tiles are
1km x 1km in size. The corresponding files for each data type is identified
with a 6-digit grid-reference number (SXNNNN) in the filename.

The data consists of 12.5 cm ground resolution, ortho-rectified,
geo-referenced true colour (RGB) files and 50 cm ground resolution,
ortho-rectified, geo-referenced infrared (IR) files (Table 1). The files
represent 89 1 km2 areas chosen as a training set, representing a total
area of 1,439 km2 of the park. In addition, there is secondary data
including files for a 2 m ground resolution Digital Surface Model and a 5
m ground resolution Digital Terrain Model. The digital surface and terrain
models have been captured for 2020 only.

3.1 Dataset description

Data in this project can be split into 4 main categories. These categories
are detailed in the table below:
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10 km

Spatial distribution of
the 80 data tiles

(a) (b)

Figure 1: Spatial distribution of sample tiles and aerial image dates (Aerial
Photography Great Britain) within the Peak District National Park UK

Data Description
Data Type Resolution

(m)
Description

Aerial Photos 12.5 Red, Green and Blue bands
Colour Infrared 50 Infrared band
Digital Terrain Model 5 Captures the underlying Earth
Digital Surface Model 2 Captures artificial and natural

features in the environment

Table 1: Summary of available datasets .

The land use schema from the Natural England survey conducted in 1991
was used for the labelled model in 2020 (Figure 2). This was a result of
a manual survey of changes in aerial photographic images between the
1970s and 1980s.

The colour-infrared (CIR) aerial photographs are taken from the
near-infrared portion of the spectrum with wavelengths between 700 nm
to about 900 nm, and the data includes values for 3 channels that can be
translated to RGB for viewing the images (so called false-colour images).
The IR data is more descriptive in vegetation classes than the RGB data
and signal has an indirect correlation with biomass. Live vegetation will
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Figure 2: 1991 land use classification schema from land survey Natural
England
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Table 2: Selected reference tiles.

Tiles of Interest
Ordnance Survey Reference Shape

Number
Features Changed

SK0987 (Fig. 3) 63 Bare peat to vegetation
SK1091 (Fig. 4) 66 Deforested patches of woodland
SK2096 (Fig. 5) 47 Bracken growth on hills
SK0961 (Fig. 6) 25 Dry stone wall destruction

appear very red and the colour intensity fades as the plant vigour
decreases. Some classes (especially deciduous plants) will change
appearance over the calendar year as they absorb light differently in
different seasons. Bare soils will appear white, blue or green with darker
colours indicating more moisture. Changes in man-made structures will
be less apparent in the IR images than the RGB data and the colours will
depend on the material. Water will appear in blue or black shades except
for shallow features which will reflect the material of the bottom of the
feature, like a stream bed, for example.

Initial data exploration was conducted using QGIS software package and
python scripts which were used to extract and visualise files from specific
grid reference numbers to compare different years side-by-side, as well
as the relevant terrain and elevation images. This allowed identification
of key changes in the land use that can be used to validate the models
tested.

Early on in the project there were discussions with the project owners to
identify tiles which showed clear changes between 2010 and 2020 in the
areas of conservation interest. These would be tiles that we could use as
positive tests of land use change with the various approaches. The four
main tiles that were identified are detailed in 2.

3.2 Data quality issues

One of the primary issues that could impact how the downstream
techniques function is the seasonality in the tiles. Some of the tiles
captured in 2010 and 2020 have been captured in different months of the
year. The data was collected from the middle of UK spring until late
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Figure 3: Bare peat to vegetation (SK0987) © Bluesky International
Limited and Getmapping Plc 2023
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Figure 4: Deforested patches of woodland (SK1091) © Bluesky
International Limited and Getmapping Plc 2023
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Figure 5: Bracken growth on hills (SK2096) © Bluesky International
Limited and Getmapping Plc 2023
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Figure 6: Dry stone wall destruction (SK0961) © Bluesky International
Limited and Getmapping Plc 2023
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summer. This will have an impact on the signatures from the various
vegetation since their shape/colour/size can be different throughout the
seasons. For example, trees in a forested area that are in leaf in one
dataset versus bare in another, or fields that are in flower/green/mown
can show up as a changes that aren’t relevant to land use change. We
have extracted the capture dates from the relevant metadata files for both
RGB and IR data to evaluate whether or not seasonal variation is
affecting model performance. The original spreadsheet provided with the
data had incorrect capture dates for the 2020 IR files.

It is also noted that the time period between the datasets is not consistent
for matched grid areas with some being several years more or less than
10 years apart.

The infrared data seems to have a uniformly more ’red’ signature in the
2010 dataset than the 2020 based on qualitative assessment and
histograms from selected tiles (Figure 7). This seems independent of
seasonal differences and may need to be normalised before use in the
models, and/or standardised in one of the layers to avoid training on
normalised data.
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Figure 7: IR data from (top) 2007 contains more red colour than (bottom)
the 2020 time point.
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4 Change detection in remote sensing
images

The objectives of the Peak District National Park’s data challenge are
closely related to the field of change detection for remote sensing
applications. It encompasses the task of capturing spatial and temporal
changes in aerial images. A variety of methods of different levels of
sophistication have been proposed for this task [1]. The output of the
majority of these algorithms are change maps. Given two input images
representing the same area at different points in time, a change map will
show some sort of notion of change measure between the inputs
assigned to each pixel pair. This takes the form of an array of the same
dimension as the input images with values either representing the
probability of change having occurred, or a binary classification of
change/no change at each point in the grid. We considered a variety of
statistical and machine learning based methods (supervised and
unsupervised), which are described in detail in section 5.

5 Techniques investigated

5.1 Iteratively Reweighted Multivariate Alteration
Detection (IR-MAD)

IR-MAD is a widely used method for land cover change detection that
leverages multivariate statistical techniques. It aims to identify significant
changes between two or more multivariate datasets, such as satellite
images, by assigning weights to the variables based on their contribution
to the change detection process.

Let’s consider two datasets: X1 and X2, where X1 = [x1
1,x

1
2, . . . ,x

1
n] and

X2 = [x2
1,x

2
2, . . . ,x

2
n] are p-dimensional matrices representing the n

samples (pixels) in each dataset.

The goal is to detect changes between the two datasets by calculating an
alteration vector D, where each element di represents the alteration of the
i-th variable.
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IRMAD calculates the alteration vector as follows:

D =

∑n
i=1 wi(x

1
i − x2

i )∑n
i=1 wi

, (1)

where wi is the weight assigned to the i-th variable.

The weights wi are computed iteratively using a robust statistical measure,
such as the median absolute deviation (MAD), to downweight the influence
of outliers in the change detection process. The iterative procedure is as
follows:

1. Initialize the weights wi to equal weights (e.g., wi = 1 for all i).

2. Compute the alteration vector D using Equation (1).

3. Compute the robust scale measure, for example, the MAD of D,
denoted as S.

4. Update the weights wi using a weight function f based on the robust
scale measure S:

wi = f

(
di

c · S

)
, (2)

where di is the i-th element of D, c is a tuning parameter, and f is a
function that assigns weights based on the scaled alteration values.

5. Repeat steps 2-4 until convergence or a predefined number of
iterations is reached.

The final alteration vector D obtained from the iterative process
represents the detected changes between the two datasets. By
examining the magnitudes and patterns of the elements in D, one can
identify the significant changes in land cover.

The change map generated by IR-MAD for one of the areas of
conservation interest where deforestation is known to occur is an
interesting case study for the success and limitations of the method as it
was implemented here. In Figure 8, the negative image of the change
map is overlaid with the predictions from the 2020 classification. The
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Figure 8: Deforestation (top) aerial photography tile SK1091 with (bottom
left) change map with a binary scale, white pixels are changed and black
pixels are unchanged, (bottom right) changes classified using the 2020
model predictions of landcover.
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results of the 2020 automated machine learning classification model
highlights the brown areas on the land use survey (’C5’) which represent
areas of recently felled or planted trees. The change map highlights these
areas as areas of change between the two time studies (brown circles).
Another interesting area of change is the farmland in the very top centre
of the grid (’H3b’) which could represent expanded farming use (green
square). There are several areas along the riverbed (pink circles and
roads (purple circle) that also show change–perhaps more tree felling.
The clusters of changed pixels inside the large grassland section (D1a)
probably represent blooming plants that change seasonally. This is an
area where the approach needs fine-tuning to extract signal from
noise.

The regeneration of peat bog reflects an increase in vegetation between
the timepoints and is clearly reflected in the change map (Figure 9.
Large-scale restoration of bog peat habitats have taken place in the Peak
District National Park to increase carbon and water capture and return
valuable biodiversity. The IR-MAD results have identified areas in the top
right corner of the images that may be a result of this restoration. The
change maps have also identified two regions (red circles) that are
identified as ’bare rock’ (G2) in the automated feature classification. Does
this represent a loss of vegetation?

5.2 Change Vector Analysis

Change Vector Analysis (CVA) is a popular method used to detect land
cover changes by analyzing the changes in spectral values between two
or more time periods. It quantifies the magnitude and direction of changes
in the multi-dimensional feature space. The CVA method can be applied
to satellite imagery or other remotely sensed data.

Let’s consider two time periods, t1 and t2, and assume that we have a set
of N spectral bands representing the land cover information for each time
period. For each pixel in the image, the spectral values at time t1 can be
denoted as Xt1 = [Xt1,1, Xt1,2, . . . , Xt1,N ], and the spectral values at time t2
as Xt2 = [Xt2,1, Xt2,2, . . . , Xt2,N ].

The change vector, V, is computed as the difference between the two
spectral vectors:
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Figure 9: Caption
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V = Xt2 −Xt1

The magnitude of the change vector, |V|, represents the overall change
in the pixel’s spectral values. It can be calculated using the Euclidean
distance:

|V| =

√√√√ N∑
i=1

(Xt2,i −Xt1,i)
2

The direction of the change vector can be determined using the angle
between V and a reference vector, R. The reference vector is typically
chosen to represent the expected or natural changes in the feature space,
such as the annual variation in vegetation. It is important to select an
appropriate reference vector for accurate change detection.

The angle, θ, between the change vector and the reference vector can be
computed using the dot product:

θ = arccos

(
V ·R

|V| · |R|

)
where · denotes the dot product and | · | represents the magnitude of a
vector.

By analyzing the change vectors for each pixel in the image, it is possible
to classify the land cover changes into different categories based on their
magnitudes and directions. Thresholds can be set to determine the
significance of changes and classify them as stable or changed
areas.

The CVA method provides valuable insights into land cover changes,
allowing researchers and decision-makers to monitor and manage
environmental resources effectively.
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5.3 Slow Feature Analysis

Slow Feature Analysis (SFA) is a method used for extracting slow-varying
features from time series data. It can be employed for detecting land cover
change by analyzing temporal patterns in satellite imagery. SFA aims to
identify changes that occur slowly over time, which are often indicative of
land cover transitions.

The SFA algorithm operates in several steps:

1. Preprocessing: Convert the satellite imagery into a time series
dataset. Each pixel location is treated as a separate time series,
representing the spectral values over time.

2. Normalization: Normalize the time series data to have zero mean
and unit variance. This step helps in removing any global trends or
biases in the data.

3. Temporal Derivatives: Compute the temporal derivatives of the
time series data. This involves estimating the rate of change for
each pixel location.

4. Decorrelation: Decorrelate the temporal derivatives by applying a
linear transformation. The transformation ensures that the resulting
features are statistically independent.

5. Slowness Principle: Identify the features that change slowly over
time. The slowness principle assumes that important changes in the
land cover typically occur slowly, and thus, the slow-varying features
capture these changes.

6. Inverse Transformation: Reverse the linear transformation applied
in the decorrelation step to obtain the slow-varying features in the
original space.

To detect land cover change, the SFA method primarily focuses on the
extraction of slow-varying features. These features are obtained by
solving an optimization problem based on the slowness principle. The
slowness measure is defined as the squared deviation between the
temporal derivative of a feature and its delayed version. Mathematically,
the slowness measure is given by:
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Slowness Measure =
1

2

T∑
t=1

(
dyi(t)

dt
− λyi(t− 1)

)2

where yi(t) represents the i-th feature at time t, dyi(t)
dt

denotes its temporal
derivative, and λ is a hyperparameter controlling the delay.

The optimization problem aims to find the feature yi(t) that minimizes the
slowness measure, subject to the constraint that the feature has unit
variance. This can be expressed as:

min
yi

1

2

T∑
t=1

(
dyi(t)

dt
− λyi(t− 1)

)2

subject to
1

T

T∑
t=1

yi(t)
2 = 1

Solving this optimization problem yields the slow-varying feature yi(t),
which can be further used for land cover change detection.

5.4 Clustering cropped images

Clustering is an unsupervised machine learning technique used to group
similar data points together based on their inherent characteristics or
similarities. It is employed in a wide range of domains such as data
analysis, pattern recognition, image processing, and customer
segmentation. The primary goal of clustering is to identify natural
groupings within a dataset without any prior knowledge of the group
labels. By assigning data points to clusters based on their similarity,
clustering algorithms reveal hidden patterns or structures in the data. The
process involves representing each item or observation in the dataset as
a data point, which is characterized by measurable attributes known as
features. These features determine the similarity or dissimilarity between
data points, typically measured using a distance metric. Clustering
algorithms, such as the popular k-means clustering algorithm, aim to
partition the dataset into a predetermined number of clusters, denoted as
’k’. The k-means algorithm iteratively assigns data points to the nearest
cluster centroid and updates the centroid based on the newly assigned
points. This process continues until convergence, where the cluster
assignments and centroids remain unchanged. K-means clustering is
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Figure 10: Out of 400 tiles we have selected 10 representative tiles using
the K-means clustering approach. This shows the 10 spatial location from
the original 2010 SK0961 picture. The selected patches show the hot
spots for changes to happen

widely used due to its simplicity and efficiency. Cluster validation
techniques can be employed to evaluate the quality and validity of the
clusters generated by the algorithm.

We believe that these patches can be used to produce synthetic data fro
the future modelling as they tend to show some of the changes that have
happened at the same location. So, instead of using the random
overlapping of images, these patches can be used to show some of the
actual changes that have happened over the years.

In future work, we would use k-means clustering with k as the number of
classes in the dataset. If we do this for the old and the new data then we
can have an indication of when one data point moves into or near another
centroid indicating that it might have changed class.

5.5 Visualising features extracted from cropped in
sections of images

Fig. 14 shows a visualization of features extracted from crops of the
SK1091 images. We first crop the image from 8000 by 8000 pixels into
400, 400 by 400 crops. We can then use a pre-trained feature extractor to
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Figure 11: 2020SK 10 representative images from the same location.

take the image into a representation space. We can then visualize this
space in two dimensions using T-SNE in Fig. 13. Each of the blue and
orange markers in the scatter plot in the figure represents one cropped
image section, with blue showing the 2010 data and orange showing the
2020 data. Where a point does not overlap the point corresponding to the
same image crop in old vs new, there has been a change in the feature
representation and base image, with more distance indicating more
change. We have added annotations showing the index of each of the
crops, 0 to 400. We also annotate and show a few of the representative
examples images where there is a larger gap between the two-time
points. We notice that index 177 has picked the treeline change in
SK1091. The changes in the upper right corner seem to relate the
farmland.

In future work we can add additional information to this plot, with an
example contained in the figure, by adding colors relating to the largest
prominence class contained in the cropped image, this might show some
clustering relating to the classes. This could help indicate if a cropped
image has changed class, by seeing if any of the crops have moved
towards a regen of a different color/class.

In the future, we can also add all of the images together into the analysis
for a plot showing the changes in the entire dataset, rather than just the
SK1091 image used in our analysis.
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Figure 12: Methodology used to extract features from crops of images that
are used as data points in a 2D distance plot. In future work, we can color
the 2020 data points as in the example by the label data we did not have
time to integrate.

Another possible improvement for this method would be to use the features
extracted by an autoencoder trained on the peak district data, as these
would be more relevant for the task than those of an ImageNet-trained
model. For the analysis we can then use Central Kernel Alignment [9],
which is the state-of-the-art for computing distances between extracted
feature maps.

5.6 Change detection using siamese networks

Siamese neural networks (SNNs) are a neural network architecture
commonly used for change detection in image data. They consist of
multiple sister networks with shared weights. Each sister network
produces embedding vectors for its own set of inputs. In supervised
similarity learning, these networks are trained to enhance the distinction
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Figure 13: The SK1091 T-SNE plot of features from a single image split
into 400, 400 by 400 pixel crops. The difference can be seen between the
orange and blue scatter points.
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Figure 14: We have added the colors relating to the classes which have
been labeled for the 2020 data. Where red is visible, that shows that
the representation has moved and there has been change. The number
annotations relate to the index of the crop, which can be used to view the
crop and assess change.
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(distance) between embedding vectors of inputs belonging to different
classes. At the same time, SNNs strive to minimise the distance between
embedding vectors of inputs belonging to similar classes. This training
process creates embedding spaces that effectively represent the
classification boundaries of the training inputs.

SNNs provide an attractive tool for building change detection systems
and have been successfully deployed in a wide range of real-world
applications (facial verification, product recommendation etc.). However,
SNNs in their original form require supervised learning. The dataset must
contain labels indicating change or no change, which are not available for
our data. A number of modifications of the original SNN architecture,
suitable for unsupervised learning have been proposed in recent
literature. As part of the technical exploration, we reviewed a number of
papers claiming to use unsupervised learning to detect change in aerial
photography or satellite imagery. We were particularly interested in those
reports that made code available and so focused on those listed in the
Change Detection Repository and written in Python. Candidate solutions
considered included [18, 14, 13, 12, 6, 5].

Although code for many of these examples was available, the major
obstacle to employing most network architectures was the lack (or
complete absence) of documentation to guide development. An additional
hurdle was that the code available frequently used outdated libraries that
required extra steps to build virtual environments (e.g. TensorFlow v.1.9 /
Python 3.6) or refactor for use with the environment available on virtual
machines. Although such obstacles are surmountable, it was not feasible
to spend the additional time doing so within the limited window of the
Data Study Group (DSG). We also noted a lack of pretrained networks,
which we hoped to adapt to test with images from the peak district, and
could not quickly identify links between reported systems and commonly
used model repositories (e.g. HuggingFace).

The constraints of available unsupervised systems emphasized both the
value of developing image differencing pipelines that do not require
training (Section ??) and of developing synthetic data for training simpler
(but better documented) supervised Siamese networks (see Section 5.7).
More broadly, the state of the literature and the difficulty in replicating
modelling work in the field emphasised the importance of creating
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well-documented and reusable code that appears to be lacking in this
area of the field. The robustness of a change detection system (either
produced in the DSG, or more generally) thus depends not only on its
performance across diverse image sets, but on its reproducible and
user-friendly code base if it is to be used on a regular basis (i.e. to
support change detection for future flights) or in conjunction other
organisations within the national parks authority (i.e. to study change in
other parks).

Given the importance of time in generating useful outputs and the
importance of usable, well documented and modern code, we choose to
move forward with network architectures described in sections 5.7.1,
5.9.1).

5.6.1 KPCA-MNet

KPCA-MNet is a method of computing binary and multi-class change
maps from remote sensing image pairs [15]. It utilises Kernel Principal
Component Analysis convolution to extract nonlinear spatial–spectral
features in an implicit manner using randomly selected patches as
training samples, performing what can be expressed as a convolution.
These transformations can then be stacked as layers to construct a deep
siamese KPCA convolutional mapping network. The resulting feature
maps for two inputs are then subtracted and processed into a binary
feature map. We adapted the code to work on examples from our
dataset, producing binary change maps. However, we considered this
method as a variation of the CVA and IRMAD methods. This is because
even though it is inspired by SNNs, it does not allow us to learn from the
entire dataset.

5.7 Synthetic change detection

This approach turns the given problem into a supervised, change map
generation. Given a spatial location, we would like to be able to get two
areal images from different moments in time and be able to output a
“change map”. We would like the change map to indicate the pixels that
correspond to a land cover change between the two time points.
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The data set for this problem will consist of a source image x, an image x̃
covering the same spatial area as the source image but which is taken at
a different time step, and a change map m. However, we only have
access to land cover annotations for the 2020 data so a change map
cannot be computed. We can instead create an artificial data set. Given a
source image x, we artificially create a modified version x̃, where we
know exactly which pixels have been modified. This type of image
modification is commonly used as a form of augmentation and it is
commonly known as mixed-sample data augmentation. Examples of
mixed-sample data augmentation include MixUp [17] and CutMix [16].
Mixup linearly interpolates two images, while CutMix crops a rectangular
patch from an image and overlaps it on top of another one. The change
map we generate will have the same dimenionality as the x and x̃ and
each pixel will represent the probability of land cover change. That is,
each pixel of the cover map will have a value between 0 and 1.

Data used

Since this method makes use of class information, we used a different data
subset to the one made available in the main challenge. While there exists
an overlap between the two, the land cover information is only available
for a very restricted number of tiles. For processing this data, we used the
public repository created by Thijs van der Plas.

Modifying images

For computational reasons, we choose to randomly crop patches of size
256 × 256 which we then rescale to 128 × 128 using biliniear
interpolation.

When modifying images, it is important to ensure that we are not
introducing artefacts that bias the model. For example, using rectangular
patches to distort the source image would make the model learn to look
for rectangular areas of change. We therefore want to ensure that
sufficient variety in the distortion shape and granularity is present.

We also want to ensure that when creating the change map we take into
account the case when we are mixing patches belonging to the same
land cover class. For example, if we add an artificial forest patch inside a
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forest image, then the change map should indicate that no change has
occurred, since the type of land cover is actually preserved. For this
reason, we used the data annotations provided. Note that it is possible to
create such a synthetic data set without access to the ground truth but
the quality of the trained model is expected to decrease significantly. We
therefore did not explore this approach and chose to include the land
cover information.

For creating change maps we use random mask generators as it is done
in mask mixed-data augmentation. We then modify the mask to account
for the land cover information. See Figure 15 shows examples of synthetic
images we obtain.

The first modification method we use is based on the FMix [7]
augmentation, where a mask is sampled from Fourier space. The
obtained mask has more naturally edged occluders compared to a
rectangle-based masking. Note that the shape of the mask will further
change when accounting for the land cover information. Therefore, both
hard edges and more natural-looking patterns will be present in the final
mask.

While these masks do not have the exact shape of change we would
expect to see in reality, the randomness in them helps us ensure that the
model is not learning the masking patterns. Additional, more natural
masks could be generated, as we will discuss in Section 6 but we believe
these must be coupled with a random mask-generating technique to
prevent the model from learning spurious information.

With a probability of 75%, we are also applying simple augmentations
individually to the original and modified images. The augmentations we
are currently considering include colour horizontal and vertical flip,
contrast, brightness, saturation, and hue adaptations.

Note that since the patches we sample cover an effective area of 322 m, the
masks we generate are likely going to bias the model towards mid-sized
changes.
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Figure 15: Examples of artificially generated samples. The first two rows
contain the images to be mixed. The third row depicts masks sampled from
Fourier space, while the last row shows the synthetic image obtained.
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Figure 16: U-Net-like architecture used. Images are fed separately
through the encoder and their extracted feature maps are combined at
a decoder level.

5.7.1 Architecture

We used a U-Net[11]-like architecture and based our implementation on a
publicly available repository. Compared to the usual segmentation use of
a U-Net, we create an adaptation that passes the original and the modified
image through the same encoder and then combines their features at the
decoding phase. For more details on the architecture see Figure 16. We
believe there are multiple possibilities for combining the features, which
include adding, subtracting, or concatenating. Due to time constraints, we
only explored subtracting the feature maps.

5.7.2 Experimental setting

Models were trained for 100 epochs, with a batch size of 32. We
experimented with the AdamW, SGD with momentum, and AdaDelta
optimisers and considered consine annealing, drop on plateau and
multistep learning rate schedulers.

5.8 Analysis of preliminary results

Due to the intensive image modification, the initial model we trained was
biased towards predicting that change has occurred even when no class
change was present. To counter this, we applied the image mixing with a
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Figure 17: Model predictions on synthetic validation data. The model
learns to correctly identify the class change.

probability of 50% so that the model would be trained on a more balanced
data set. This has significantly improved training and allowed us to obtain
a model with ∼ 92% accuracy on the synthetic test data.

From the available data that had land cover information available, we do a
70-30 train-validation split. Figure 17 shows examples of results we obtain
on the validation data, which visually confirm the high accuracy we report.
The high accuracy we obtain indicates that the model does not simply
learn to do a pixel-wise comparison of two images but instead it is able to
identify whether the pixels that have changed belong to the same type of
land cover or not. Therefore, we believe this provides strong evidence that
the proposed approach is promising.

However, simply applying our model to the 2010 data requires more
careful training. Firstly, since we needed to use the land cover
information, the size of the training data was drastically reduced. This
directly affects the model’s invariance to the slight covariate shift we
expect to see between the 2010 and 2020 data. For example, the model
seemed to be sensitive to the shadows. To counter for this, we added an
artificial shadow by sampling a Fourier mask with a 50% probability and
applying gray patches on images. Note that unlike the mask used for
mixing images, which is smooth (i.e. non-binary), for mimicking shadows
we use a binary mask. We were unable to report full results on this
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version due to time constraints but strongly believe it will further help the
model learn invariance to spurious features.

Overall, we believe this approach is worth exploring in more detail and we
are confident that with carefully designed improvements a robust model
could be trained.

5.8.1 Future work

One possible way of reducing the covariate shift would be to also train
with images from other years or regions. However, this must be carefully
designed since without a rough land cover segmentation, a lot of incorrect
data could be introduced. As we discussed earlier, mixing two images
from the same class and setting the change map ground truth to the
mixing mask would simply teach the model to predict pixel-wise change.
An option to consider is including generating rough segmentation masks
with the existing supervised approach. Although the supervised
segmentation predictions might contain inaccuracies, we believe that this
would make us less likely to create incorrect synthetic data. Nonetheless,
we believe a relatively small percentage of data where the land cover was
not annotated by experts should be used and additional methods for
mitigating the shift should be considered.

There is a great scope for future work in terms of architecture definition.
An immediate alternative for example is to adapt a U-Net with ResNet [8]
backbone for our setting. Similarly, due to time constraints we did not
experiment extensively with the optimisation side of training. We believe
significantly better results can be obtained by doing so.

Lastly, when making predictions, a small artefact seems to consistently
appear in the corners of the change mask. We believe this is due to the
padding in the network and can be straightforwardly removed in
future.

5.9 Auto encoders for change detection

An autoencoder is a type of neural network frequently employed for
representing data in a compressed form [4]. Its architecture comprises an
encoder and a decoder, as seen in Figure 18. The encoder compresses
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Figure 18: Autoencoder architecture schematic.

the data to distil only meaningful information, mapping each input data
sample to a lower-dimensional representation in latent space. This latent
space representation forms the compressed version of pertinent feature
vectors. Subsequently, the decoder reconstructs the original input from
this latent space representation. The primary objective of an autoencoder
is to learn an efficient representation of the input data by minimizing the
reconstruction error between the input and the output. The auto-encoder
reconstructs only the most significant features by compressing data into
the latent space. Consequently, this facilitates the representation of
complex structures in the data as simplified form. Autoencoders have
been applied to various problems such as dimensionality reduction,
denoising, and anomaly detection . . . They usually work well in
unsupervised learning problems [10].

Application in Satellite Image Change Detection

Change detection in satellite images is a vital operation in the realm of
remote sensing, necessitating the recognition and analysis of alterations
within distinct snapshots of the same geographical area (Peak Districts)
captured at different time points. Autoencoders have found wide-ranging
applications in various computer vision tasks related to satellite imagery,
including land crop analysis and weather prediction [3],[2]. These neural
network models are powerful tools for discerning underlying patterns in
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complex and feature-rich land cover satellite images.

In this study, we utilized an autoencoder to identify changes in the Peak
Districts by processing two images from two separate time points: 2010
and 2020. The reconstructed image from the autoencoder acts as a
conduit for evaluation. In this pipeline, images from different epochs are
input, and a change map—consisting of the differences in learned
features—is generated. This map provides a graphical representation of
the regions where significant changes have occurred over the course of
time.

The workflow for using our auto-encoder in change detection for the
images from the peak district.

1. Data Preprocessing: The original images, which were of
dimensions 8000 x 8000, were resized to a smaller resolution of 128
x 128. The cropping was the sole preprocessing step implemented,
as the original dataset had already been subjected to thorough
cleaning.

2. Training Architecture: We have undertaken the task of training an
autoencoder using the available satellite imagery of the Peak
District. This autoencoder learns to transform the input images into
a compressed representation in the latent space and then
reconstruct the original images from this condensed form. In our
experiments, we have tested the model under diverse configurations
for a more comprehensive understanding of its performance. In one
instance, the architecture includes three convolutional layers and a
single fully connected layer. In a separate variation, we employed
four convolutional layers in both the encoder and the decoder parts
of the model without any fully connected layers. However, there
were no significant variations in the results.

3. Results: Once the auto-encoder is trained, it can encode and
reconstruct new pairs of satellite images captured at different time
points. The differences or changes between the reconstructed
images can be identified by comparing the outputs from the
autoencoder.

Autoencoders confer numerous benefits when employed in satellite
image change detection. Their ability to autonomously decipher intricate
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Figure 19: Autoencoder without fully connected layers
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Figure 20: Comparison of original and reconstructed images for an
Autoencoder with a wide kernel size (8) in the initial convolutional layer,
connected to two consecutive layers (kernel size = 3) and a fully connected
layer and output to a latent space with 20 dimensions

spatial and spectral patterns within images allows them to detect subtle
modifications often invisible to the naked eye. Moreover, as learned by
the autoencoder, the concise and insightful representation of images in
the latent space contributes to effective and efficient change detection
and subsequent analysis.

However, the current stage of our results didn’t meet our expectations.
The comparisons highlighted below, conducted on networks with three
convolutional layers, didn’t yield the anticipated output. Yet, we are
optimistic that fine-tuning the hyperparameters could potentially enhance
the performance of these models.
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Figure 21: Comparison of original and reconstructed images for
an Autoencoder with narrow convolutions (kernel size = 3) in three
consecutive layers, before a fully connected layer and output to a latent
space with 256 dimensions
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5.9.1 Variational Autoencoder(VAE)

is a type of generative model that, unlike traditional autoencoders, maps
each data point in the input to a distribution in the latent space rather than
a single point. This facilitates the generation of new data samples but
introduces an element of uncertainty into the encoding-decoding process.
We explored using a VAE for this task; however, due to time constraints,
we only worked on a surrogate MNIST dataset consisting of binary image
data. To use it on our data, the VAE must be adapted to be used for
predicting RGB data, modifying the number of channels and the
reconstruction distribution to allow for the appropriate data format. This
could be tried as a possible extension of the project.

Various variations of the auto-encoder were attempted. These
included

5.9.2 Hyper parameters

Table 3: Autoencoder Training Parameters

Parameter Value
Learning Rate 0.001

Batch Size 128
Number of Epochs 50

Optimizer Adam
Loss Function Mean Squared Error

Encoder Layers 3
Decoder Layers 3

Activation Function ReLU

5.9.3 Image differencing in latent space

The autoencoder was used to produce change maps with feature maps
incorporating information from the entire dataset, unlike statistical and
KPCA-MNet methods. The autoencoder was trained on examples chosen
from the datasat of both 2010 and 2020 aerial images, to capture the
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Figure 22: Image differencing in latent space. ©Bluesky International
Limited and Getmapping Plc [2011, 2020]
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5.9.4 Future Works

We have explored a number of auto-encoder architectures, which show
some promising results, other avenues that exploring would be fine-tuning
also future research direction might attempt to explore other state of art
architectures such as U-net and Vision Transformers.
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Figure 23: Change map outputs for RGB images: CVA, IR-MAD and SFA,
© Bluesky International Limited and Getmapping Plc
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Figure 24: Change map outputs for IR images: IR-MAD, © Bluesky
International Limited and Getmapping Plc45



6 Discussion and Future Work

6.1 Discussions

To employ some of the more cutting edge unsupervised SNNs that have
already applied to aerial photography would require correspondence with
authors of the relevant papers to get code working or access pre-trained
models. Given the current rate of development, it is likely that similar
approaches will continue to influence the field and it may be fruitful to
pursue in house development of such methods.

Neural network training (Autoencoders specifically) could be accelerated
by optimising image loading as current code must load and then crop
images from 8000 to 128 pixels. There are potential time savings to be
made by caching a small number of images and using several patches
within each for every training batch, rather than taking the time to load
and then discard the majority of image data.

6.2 Future Work

Future work should focus on some of the limitations that were identified in
this work. Users should pay close attention to any comparisons made
when the acqusition months vary significantly between the two years.
This is because particular species such as bracken changes its colours
significantly between summer and winter months.

In addition, these current techniques do not take into consideration the
different times of day that the acquisitions were taken. This means that
shadows from objects in the image can potentially introduce artefacts of
changes in the land usage.

6.3 Recommendations

One of the main challenges of change detection is to disambiguate what
pixel change is relevant land cover change and what is noise (due to, e.g.,
seasonality, sensor normalisation and shadows). The statistical methods
(CVA, IR-MAD, SFA) seem fundamentally limited in overcoming this noise
problem, while deep learning based methods (Resnet feature extraction,
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auto-encoders, possibly siamese networks) are in principle capable to
overcome this issue.

Performance of deep learning based methods could be further improved
by using encoders pretrained on the same or similar data, instead of using
encoders pretrained on generic image data sets.

Synthesising change data (by mixing images) has the potential to provide
the data required to train some of these deep learning methods.
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